博看读书 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

显然,每个运动群的基本区域,与其经该群变换得到的全等区域共同作用,可完全填满空间。由此引出一个问题:是否存在这样的多面体——它们并非运动群的基本区域,但通过适当拼接其全等副本,仍能完全填满整个空间?

我还想指出一个与上述问题相关、对於数论具有重要意义,且可能对物理与化学有实际用途的问题:如何将无限多个给定形状的全等立体(例如给定半径的球体、给定棱长的正四面体,或处于指定位置的立体)在空间中最密堆积?即如何拼接这些立体,使得被填满空间与未被填满空间的比值尽可能大?

若回顾上世纪函数理论的发展,我们会发现,被我们如今称为“解析函数”的这类函数具有根本性的重要地位——这类函数或许将永远处于数学研究的核心领域。

在所有可想象的函数中,我们可从多个不同角度选出范围广泛、值得深入研究的函数类。例如,考虑由常微分方程或偏微分方程所刻画的函数类。但需注意,这类函数并不包含数论中产生的、极具研究价值的函数。以之前提及的函数(原文未明确函数符号,此处按上下文保留“函数”表述)为例:借助该函数与(原文未明确符号,此处按上下文保留“与”后的留白)之间的已知关系,再结合霍尔德(holder)已证明的“函数(原文未明确函数符号,此处按上下文保留“函数”表述)不满足任何代数微分方程”这一定理[46],可轻易看出,上述函数(原文未明确函数符号,此处按上下文保留“上述函数”表述)也不满足任何代数微分方程。再如,由无穷级数(原文未写出级数具体形式,此处按上下文保留空白)定义的二元函数(自变量为(原文未明确变量符号,此处按上下文保留“自变量为”后的留白)与(原文未明确变量符号,此处按上下文保留“与”后的留白)),虽与函数(原文未明确函数符号,此处按上下文保留“函数”表述)关系密切,但它或许也不满足任何代数偏微分方程。要探究这一问题,需用到函数方程(原文未写出方程具体形式,此处按上下文保留空白)。

另一方面,若因算术或几何方面的原因,我们不得不考虑“所有连续且无限可微的函数”构成的类,那么在研究这类函数时,我们将无法借助“幂级数”这一灵活工具,也无法利用“函数在任意小区域内的取值即可完全确定整个函数”这一特性。因此,前一种函数类的范围过窄,而后一种(即所有连续且无限可微的函数类)在我看来又过于宽泛。

另一方面,解析函数的概念涵盖了所有对科学而言至关重要的函数——无论这些函数源自数论、微分方程理论、代数函数方程理论,还是产生于几何学或数学物理学领域。因此,在整个函数领域中,解析函数当之无愧地占据着无可争议的核心地位。

[41]《克雷尔杂志》(crelles Journal),第84卷(1878年);以及《那不勒斯皇家科学院院报》(Atti d. Reale Acad. di Napoli),1880年。

[42](相关着作)莱比锡,1897年。尤其参见第一部分(Abschnitt I),第二章与第三章(chaplets 2 and 3,注:“chaplets”应为“Kapitel”的拼写误差,意为“章节”)。

[43]《图形正规系统的对称性》(Symmetrie der regelm?ssigen Systeme von Figuren),1890年。

[44]《晶体系统与晶体结构》(Krystallsysteme und Krystallstruktur),莱比锡,1891年。

[45]《数学年刊》(math. Annalen),第53卷。

[46]《数学年刊》(math. Annalen),第28卷。

19. 变分法正则问题的解是否必然解析?

在解析函数理论的基础内容中,最值得关注的事实之一在我看来是:存在这样一类偏微分方程,其所有积分必然是自变量的解析函数——简而言之,这类方程仅存在解析解。此类方程中最知名的包括位势方程(原文未写出方程具体形式,此处按上下文保留“位势方程”表述),以及皮卡(picard)研究过的某些线性微分方程[47];此外还有极小曲面的偏微分方程(原文未写出方程具体形式,此处按上下文保留“极小曲面的偏微分方程”表述)等。

这类偏微分方程大多有一个共同特征:它们是某些变分问题的拉格朗日微分方程,即针对如下形式的变分问题(原文未写出变分问题具体形式,此处按上下文保留“如下形式的变分问题”表述):在讨论范围内的所有自变量取值下,均满足不等式(原文未写出不等式具体形式,此处按上下文保留“不等式”表述),其中(原文未明确符号,此处按上下文保留“其中”后的留白)本身是解析函数。我们将这类问题称为“正则变分问题”。

在几何学、力学与数学物理学中,发挥作用的主要正是这类正则变分问题。由此自然引出一个问题:正则变分问题的所有解是否必然是解析函数?换句话说,正则变分问题的拉格朗日偏微分方程是否都具有“仅存在解析积分”的性质?即便像位势函数的狄利克雷问题那样,要求函数满足的边界值是连续但非解析的,情况是否依然如此?

我还可补充一点:存在高斯曲率恒为负的曲面,其可由“连续且具有各阶导数,但非解析”的函数表示;另一方面,高斯曲率恒为正的曲面则很可能必然是解析曲面。我们知道,正曲率常曲面与下述正则变分问题密切相关:在空间中给定一条闭曲线,求一张极小面积曲面,使其与“通过同一条闭曲线的某张固定曲面”共同围成一个给定体积。

[47]《巴黎综合工科学校杂志》(Jour. de lEcole polytech.),1890年。

20. 一般边值问题

与上述问题密切相关的一个重要问题是:当区域边界上的函数值给定时,偏微分方程解的存在性问题。h.A.施瓦茨(h. A. Schwarz)、c.诺伊曼(c. Neumann)与庞加莱(poincaré)借助精巧的方法,已基本解决了位势方程的这一问题。

然而,这些方法通常难以直接推广到以下情形:边界上给定的不是函数值,而是“函数的导数值”,或“导数值与函数值之间的某种关系”。它们也无法直接推广到“所求曲面并非位势曲面,而是需通过某条给定扭曲线或覆盖某张给定环形曲面的极小面积曲面、正曲率常曲面等”的情形。

我确信,可借助一个由狄利克雷原理指明本质的一般原理,证明这些存在性定理。进而,这一一般原理或许能帮助我们探讨如下问题:若满足关于给定边界条件的某些假设(例如,边界条件中涉及的函数连续,且在某些截面上具有一阶或多阶导数),且必要时对“解的定义”进行适当推广,那么是否每个正则变分问题都存在解[48]?

[48]参见我在《德国数学会年度报告》(Jahresber. d. deutschen math.-Vereinigung)第8卷(1900年)第184页发表的关于狄利克雷原理的演讲。

21. 具有给定单值群的线性微分方程的存在性证明

在单自变量(原文未明确变量符号,此处按上下文保留“单自变量”表述)的线性微分方程理论中,我想指出一个重要问题——黎曼(Riemann)本人很可能也曾关注过这个问题。该问题如下:证明总存在一个富克斯型(Fuchsian class)线性微分方程,使其具有给定的奇点和单值群(monodromic group)[第35页]。

这个问题要求构造个(原文未明确数量符号,此处按上下文保留“个”表述)关于变量(原文未明确变量符号,此处按上下文保留“变量”表述)的函数,需满足以下条件:

1. 这些函数在复(原文未明确变量符号,此处按上下文保留“复”后的留白)平面上,除给定的奇点外均解析;

2. 在这些奇点处,函数最多仅具有有限阶极点;

3. 当(原文未明确变量符号,此处按上下文保留“当”后的留白)绕这些奇点作闭合曲线运动时,函数会发生给定的线性变换。

通过计数常数的方法,已可推断这类微分方程大概率存在;但截至目前,仅在“给定线性变换的特征方程的所有根的绝对值均为1”这一特殊情形下,才得到了严格证明。L.施莱辛格(L. Schlesinger)基于庞加莱(poincaré)的富克斯函数(Fuchsian -functions)理论,给出了这一情形的证明[49]。显然,若能通过某种完全通用的方法解决此处概述的问题,线性微分方程理论的体系将会更加完善。

[49]《线性微分方程理论手册》(handbuch der theorie der linearen differentialgleichungen),第2卷第2部分,第366节。

22. 借助自守函数使解析关系单值化

正如庞加莱(poincaré)首次证明的那样,利用单变量的自守函数,总能将两个变量之间的任意代数关系化为单值的。也就是说,对于任意给定的二元代数方程,总能找到两个关于单变量的单值自守函数,使得将这两个函数代入方程后,方程成为恒等式。

庞加莱还尝试将这一基本定理推广到“两个变量之间的任意非代数解析关系”的情形,且取得了成功[50]——不过,所用方法与他解决上述代数关系单值化问题时的方法完全不同。

然而,从庞加莱对“二元任意解析关系可单值化”的证明中,无法看出能否通过确定“分解函数”(resolving functions)来满足某些额外条件。具体而言,该证明并未表明:能否选择这两个关于新单变量的单值函数,使得当新变量遍历这些函数的解析区域时,能覆盖并表示出给定解析域的所有解析点。相反,从庞加莱的研究[第36页]来看,情况似乎是:除分支点外,解析域中还存在其他特殊点(通常是无穷多个离散的例外点),要到达这些点,只能让新变量趋近于函数的某些极限点。

鉴于庞加莱对该问题的表述具有基础性重要意义,我认为,阐明并解决这一难点是极为必要的。

与该问题相关的,还有“将三个或更多复变量之间的代数关系(或其他任意解析关系)化为单值”的问题——已知该问题在许多特殊情形下是可解的。皮卡(picard)近期关于二元代数函数的研究,可视为解决这一问题的有益且重要的前期探索。

[50]《法国数学会通报》(bull. de la Soc. math. de France),第11卷(1883年)。

23. 变分法方法的进一步发展

截至目前,我所提及的问题大多尽可能明确且具体——因为我认为,正是这类明确具体的问题最能吸引我们,且往往对科学产生最持久的影响。不过,我想以一个一般性问题作为收尾,即谈谈本次演讲中多次提到的一个数学分支——变分法(the calculus of variations)[51]。尽管魏尔斯特拉斯(weierstrass)近期已极大推动了该分支的发展,但在我看来,它尚未获得应有的广泛认可。

人们对变分法缺乏关注,部分原因或许是缺少可靠的现代教科书。正因如此,A.克内泽尔(A. Kneser)在其最新出版的着作中,从现代视角出发、结合现代数学对严谨性的要求来阐述变分法,这一做法更值得称赞[52]。

从最广泛的意义上讲,变分法是“函数变分的理论”,因此可视为微积分(微分学与积分学)的必要延伸。从这个角度看,例如庞加莱(poincaré)关于三体问题的研究,就构成了变分法的一个章节——因为庞加莱正是通过变分原理,从已知轨道出发推导出了具有相似性质的新轨道[第37页]。

在此,我想对演讲开头处关于变分法的一般性论述稍作补充说明。

众所周知,经典变分法中最简单的问题是:找到一个关于变量(原文未明确变量符号,此处按上下文保留“变量”表述)的函数(原文未明确函数符号,此处按上下文保留“函数”表述),使得定积分(原文未写出积分具体形式,此处按上下文保留“定积分”表述)的值,相较于“将(原文未明确函数符号,此处按上下文保留“将”后的留白)替换为其他具有相同初值与终值的关于(原文未明确变量符号,此处按上下文保留“关于”后的留白)的函数”时的积分值,取得最小值。

在通常意义下,一阶变分(原文未写出变分具体形式,此处按上下文保留“一阶变分”表述)等于零,可得到所求函数(原文未明确函数符号,此处按上下文保留“函数”表述)满足的着名微分方程:

(原文未写出方程具体形式,此处按上下文保留空白,标注为方程(1))

为更深入探究取得所需最小值的必要条件与充分条件,我们考虑积分(原文未写出积分具体形式,此处按上下文保留“积分”表述,标注为积分J)。

现在我们要探讨:应如何将(原文未明确符号,此处按上下文保留“将”后的留白)确定为关于(原文未明确变量符号,此处按上下文保留“关于”后的留白)与(原文未明确变量符号,此处按上下文保留“与”后的留白)的函数,才能使积分J的值与积分路径无关——即与关于变量(原文未明确变量符号,此处按上下文保留“变量”表述)的函数(原文未明确函数符号,此处按上下文保留“函数”表述)的选择无关。积分J具有如下形式[第38页]:

(原文未写出积分具体形式,此处按上下文保留空白)

其中(原文未明确符号,此处按上下文保留“其中”后的留白)与(原文未明确符号,此处按上下文保留“与”后的留白)不含(原文未明确符号,此处按上下文保留“不含”后的留白);而在新问题所要求的意义下,一阶变分(原文未写出变分具体形式,此处按上下文保留“一阶变分”表述)等于零,可得到方程:

(原文未写出方程具体形式,此处按上下文保留空白)

即关于两个变量(原文未明确变量符号,此处按上下文保留“两个变量”表述)与(原文未明确变量符号,此处按上下文保留“与”后的留白)的函数(原文未明确函数符号,此处按上下文保留“函数”表述),需满足一阶偏微分方程:

(原文未写出方程具体形式,此处按上下文保留空白,标注为方程(1*))

二阶常微分方程(1)与一阶偏微分方程(1*)之间存在极为密切的联系。通过以下简单变换,这种联系可立即显现:

(原文未写出变换具体形式,此处按上下文保留空白)

博看读书推荐阅读:穿书之反派儿子九岁半惊!嫡长女她撕了豪门炮灰剧本小生问道之九天逆世崩铁:我真不是秩序太一觉醒八三,嘴碎丈夫冷脸洗内裤野性难驯修仙而已,只复仇不搞纯爱嫁糙痞军官!娇软美人顶不住了我的现实女友恋上我的游戏女友被赶出国公府,假千金富可敌国什么温柔万人迷竟然还吃香在年代文里手握空间称王称霸穿成虐文女主,都别想逼她走剧情春来江山笑我在清园肆与大佬结盟流金岁月:开局女神就倒追?海贼王之天龙人的荣耀猎罪图鉴:我能看见破案提示绝区零:系统商店怎么越来越怪养猫逗狗让我爱情事业双丰收李丽精灵:重生之我在合众当教父快穿:宿主手持空间一心囤货无限惊悚:我在恐怖游戏里杀疯了一个不正的出马仙帝凰策:魏璎珞的乱世抉择平山随快穿之相见未识假面骑士:另类魔王的旅行小夫人会玄学,携崽炸翻豪门六皇子快追,阮小姐又上战场了【追金主火葬场】我跪等哥哥回头卡牌:用三国卡组给对手带来啸容穿书!女主保镖成了我的菜!轮回恋曲:遗忘的秘密心声暴露后,炮灰团被我骂傻了这家事务所不太正经星辰夜晚CF外挂上交:大哥只想保护人类从斗罗开始的秋冥山组织我,熊猫!骑东北虎摆摊直播爆红万里晴空说我假冒神明,我雕刻敕封人间假千金被赶,嫁给老首长养崽崽雄城风云山海长生赋杏花村最强的王者重生,不愿为妃龙玲传奇
博看读书搜藏榜:君意洽废柴逆天,废物小姐竟是全系天才娘娘不在乎血族琴酒,在线自闭被家暴致死后,重生八零虐渣鉴宝社恐女修靠网游在修仙界生存重生千禧年,我带领全村发家致富现实世界走出的宗师快穿之每个世界都在发疯万千眷侣王爷痛哭,王妃画风逐渐走歪一笙慕君快乐系球王,愁苦瓜迪奥拉腹黑大佬家的小祖宗甜化啦!全能门将觅香茅山道士传奇2从东京开始的武圣美人今嫁嫁给万年老妖,想短命都不行穿成不受宠嫡女,我灭全家造反了超能勇士2温柔成瘾救命!算的太准,被全球首富盯上了死后在地府我和我死对头he了凡人修仙:我有扇能穿越的青铜门狼少女的童话之旅穿成恶毒后妈,努力养正小反派四合院之开局让傻柱识破绝户计长生:柳星海游记哇,老祖宗看我刷视频全都惊呆了COS瞎子穿越盗墓世界背景后豪门全员读心?缺德后妈创哭他们假千金一不小心养了反派,想跑路这个黑希儿可以打终焉误惹黄金单身汉:豪门权妇天灾之我携空间闯末世在生存游戏里卷生卷死鬼吹灯之秘墓异闻录落魄千金掉马后:各界大佬抢疯了中州梦史星星总会来护我穿书后我成了反派的炮灰娇妻观影终极一班3灵泉空间之逃荒农女超彪悍爱情自有天意,缘分命中注定穿越千年与你相恋灵气复苏:从仓鼠开始进化重生在死前一小时乡村灵异:被封印的禁忌传说
博看读书最新小说:帅哥请自重,你只是个玩偶斗罗:开除后,史莱克跪求我回去从漫威开始的多元之旅别人神墟我神道,敢弄死我就放嘲面具下,维和指挥长他心动了!老房着火:太傅家的小福妻娇又甜呼吸而已,他们却说我手段了得战锤原体:黄金王座有我一份七零空间,搬空后钱钱一箱又一箱晓海梦寻仙病娇男主被嫌弃?都闪开我来奥特,开局遇储星团玉佩有灵神凰毒妃:残王,别乱动白月光她持手术刀归来预知未来,我将一次不败!吃吃吃,都来吃循环凶案:来自地狱的重复杀机清穿爆改胤礽,太子妃一心搞基建卿卿如月,湛如目大怪兽格斗:我成了怪兽训练师崩坏:社畜舰长,病娇女武神勿扰从孤女开始,江山与美男都笑纳赛尔:天尊不是街溜子种田文女配怎么了?要尊重命运从微尘到星穹电竞:疯批AD他只听辅助的朕的后宫为何会这样?公主多夫娱乐圈:穿越一千次,归来已无敌我是皮卡丘:与小智的巅峰之路七零兵王:夫人来自末世那年盛夏,那年我们!综影视,碎魂织星凤起九霄:摄政王的猎心毒宠三角洲:成为白毛萝莉被雷斯收养开局绝境,我以战歌撼九天江南八怪我的剑不太对劲青柠味微光关小黑屋?正好,我爱摆烂不下床一不小心苟到宠妃了当囤货吸血鬼来到末世姐妹换婚嫁双王,一人送顶绿帽子穿成极品一家,统领全村逃荒总裁与女秘书的穿越神奇宝贝之百变怪与喵喵的冒险[凡人修仙传]痴女修仙在生死簿上卡BUG偏执男主?我拿走后,女主哭了