博看读书 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

第 210 章 三角换元法之探

又一日,学堂之内,戴浩文再开新篇。

戴浩文缓声道:“今日为师要与尔等讲授另一奇妙之法,名曰三角换元法。”

众学子皆屏气凝神,静待下文。

李华拱手问道:“先生,此三角换元法又是何意?”

戴浩文微笑答道:“且看,若有方程 x2 + y2 = 1,吾等可设 x = cosθ,y = sinθ,此即为三角换元。”

张明面露疑惑:“先生,为何如此设之?”

戴浩文耐心解释道:“诸君可知三角函数之特性?cos2θ + sin2θ = 1,恰与吾等所给方程相符。如此设之,可使求解之路径明晰。”

王强问道:“那若方程为 x2 + 4y2 = 4,又当如何?”

戴浩文道:“此时,可设 x = 2cosθ,y = sinθ。如此,原方程便化为 4cos2θ + 4sin2θ = 4,正合题意。”

赵婷轻声道:“先生,此设颇有巧妙之处。”

戴浩文点头道:“然也。再看若有式子 √(1 - x2),吾等设 x = sinθ,则此式可化为 √(1 - sin2θ) = cosθ 。”

李华思索片刻道:“先生,此换元法于解题有何妙处?”

戴浩文笑曰:“其妙处众多。若求函数之最值,或化简复杂之式,皆能大显身手。譬如,求函数 x + √(1 - x2) 之值域。”

众学子纷纷低头思索。

戴浩文见状,提示道:“已设 x = sinθ,代入可得 sinθ + cosθ 。诸君可还记得两角和之公式?”

张明恍然道:“先生,吾记得,sinθ + cosθ = √2sin(θ + π\/4) 。”

戴浩文赞道:“善!由此可知其值域为 [-√2, √2] 。”

王强又问:“先生,若式中含分式,又当如何?”

戴浩文道:“莫急,若有式子 (1 - x2) \/ (1 + x2) ,设 x = tanθ ,则可化简求解。”

赵婷道:“先生,此中计算恐有繁难之处。”

戴浩文道:“不错,然只要步步为营,细心推之,必能解出。”

说罢,戴浩文在黑板上详细演示计算过程。

......

如此讲学许久,学子们对三角换元法初窥门径。

戴浩文又道:“今留数题,尔等课后细细思索。若有不明,来日再论。”

学子们领命而去,皆欲深研此奇妙之法。

数日之后,众学子再次齐聚学堂。

戴浩文扫视众人,缓声问道:“前几日所授三角换元法,尔等可有研习?”

学子们纷纷点头,李华率先说道:“先生,学生课后反复思索,略有心得,然仍有诸多不明之处。”

戴浩文微笑道:“但说无妨。”

李华拱手道:“若方程为 9x2 + 16y2 = 144,该如何进行三角换元?”

戴浩文答道:“可设 x = 4cosθ,y = 3sinθ。如此一来,原方程化为 16cos2θ + 9sin2θ = 144,与原式契合。”

王强接着问道:“先生,那对于形如 √(x2 - 2x + 1) 这样的式子,又当如何三角换元?”

戴浩文耐心解释道:“先将其化为 √((x - 1)2) = |x - 1| ,再设 x - 1 = t ,若要三角换元,可令 t = sinθ 。”

赵婷疑惑道:“先生,为何有时设 x = cosθ ,有时又设 x = sinθ 呢?”

戴浩文道:“此需视具体问题而定。若方程或式子之形式与 cosθ 或 sinθ 之特性相关,便按需设之。”

张明道:“先生,三角换元法在求定积分时可有应用?”

戴浩文点头道:“自然有。譬如求∫(0 到 1) √(1 - x2) dx ,设 x = sinθ ,则可将其化为三角函数之积分,求解更为简便。”

说罢,戴浩文在黑板上详细推演计算过程。

“诸位且看,如此换元之后,积分上下限亦需相应变换。”

学子们目不转睛,仔细聆听。

王强道:“先生,那若遇复杂之复合函数,可否用三角换元?”

戴浩文笑曰:“只要能寻得恰当之替换关系,未尝不可。就如函数 f(x) = √(2 - x - x2) ,先将其内部配方,再进行三角换元。”

戴浩文边讲边写,学子们不时点头,似有所悟。

李华又问:“先生,三角换元法与均值换元法可有相通之处?”

戴浩文沉思片刻,道:“二者皆为换元之法,旨在简化问题。均值换元常以均值为桥梁,而三角换元则借助三角函数之特性。然具体运用,需依题而定。”

......

戴浩文滔滔不绝,讲解不停,学子们或问或思,气氛热烈。

不知不觉,日已西斜。

戴浩文轻咳一声,道:“今日所讲,尔等回去需多加温习。数学之道,在于勤思多练,方能融会贯通。”

学子们躬身行礼:“谨遵先生教诲。”

众人散去,然对三角换元法之探索,方兴未艾。

又过数日,课堂之上。

戴浩文道:“今来考查一番尔等对三角换元法之掌握。”

遂出一题:求函数 y = x + √(2 - x2) 的最大值。

学子们纷纷提笔计算。

片刻后,赵婷起身道:“先生,学生设 x = √2 cosθ ,解得最大值为√2 。”

戴浩文微微颔首:“不错。那再看此题,若 x、y 满足 x2 + y2 - 2x + 4y = 0 ,求 x - 2y 的最大值。”

众学子再度陷入沉思。

张明道:“先生,可否设 x - 2y = z ,将其转化为直线与圆的位置关系,再用三角换元求解?”

戴浩文抚掌大笑:“妙哉!果能举一反三。”

就这样,在戴浩文的悉心教导下,学子们在三角换元法的海洋中不断探索,学问日益精进。

......

时光荏苒,学子们在数学的世界里越走越远,而三角换元法也成为他们攻克难题的有力武器。

博看读书推荐阅读:回到明朝做昏君明末:大周太祖崛起1892农家小媳妇烽烟起之龙啸天下无敌从我是特种兵开始挽清:同治盛世始皇帝猎国!末世从封王开始诗词无双,这个乞丐是诗仙说好的纨绔,怎么就人中龙凤了!穿越古代:开局召唤玄甲铁骑大明未央穿越大康:众人吃野菜,我带娇妻大鱼大肉三国:我刘阿斗真不是曹操的种啊带着全面战争开始征服三国第一强兵江户旅人戏说西域36国契约娇妻:王爷的宠妃大唐:我摆烂后,武则天慌了!浪子列国历险记交手公子出巡琅琊榜之安定天下大唐:误会了我不是你爹!大明开着战舰做生意塞仙志从废物到大帝,你们高攀不起!历史放映厅从大秦开始穿越明朝,开局觉醒华夏文明隋唐:被李家退婚,我截胡观音婢回到三国初年搅动天下穿越大乾,开局就娶三个媳妇视频被古人看到了怎么办北宋振兴攻略重生大明只想养老系统要征服天下穿越:新妃十八岁科举,这个书生会武功糜汉被抄家后,凶猛世子称霸天下医道风云志我执天下我是王富贵穿越大明我成了老朱儿子!陛下,饶了貂蝉吧,你阳气太重了都穿越了,谁还惯着你,造反!烧锅千年烟火传正德五十年
博看读书搜藏榜:七十年代那场战争春秋发明家三国第一狠人大明群英传歃血绝对荣誉出生后就被内定为皇后如何帮助女主在异世界建立势力?西楚霸王:开局进宫假太监三国之献帝兴汉大隋:我,杨广,又苟又稳帝国联盟大唐房二人生苦乐多:王朝中兴看我了银河武装:带颗卫星到大明生子当如孙仲谋我在古代逃荒人在三国也修真精灵降临!陛下,这叫宝可梦!一天拯救大明,我自己也没底贤王传大宋说书人魂穿大唐公主收割机大宋祖王爷三国纵横之凉州辞开局结交孙坚,截胡传国玉玺没想到吧我是重生的穿越三国,匡扶汉室!穿越乱世,我开创了盛世王朝大宋第一太子朱门华章录人在大唐本想低调三国之极品富二代终极潜伏北京保卫战逆转,延大明百年国祚蒸汽大汉:家兄霍去病特种兵之万界军火商郭嘉乱世枭雄之胡子将军秦有锐士极品妖孽兵王染谷君的异常三国之召唤梁山好汉科举,这个书生会武功大唐:我摆烂后,武则天慌了!湛湛露斯卿镇国二公子王爷乱来:亲亲小痞妃向秦始皇送上大学生盛世第一妾
博看读书最新小说:中国古代奇闻录白话文讲资治通鉴天幕:对!我爹洪武三十五年传位红楼:开局听劝系统,贾颜逆袭综武:我的弟子不知低调为何物元末:红旗漫卷,替天行道十世轮回之炼体时空霸主:从宋末开始打造全球帝大明余晖中的守夜人陛下,您的奏折上热门了!娘娘,请卸甲!重生明末?结党!必须结党!幽州铁骑:开局替刘备结拜了大明:朕即天意,手搓神话大军开局:系统,你管这叫九子夺嫡?古人的智慧开局穿越,我在晚唐搞基建我是纨绔世子,怎么就要造反了?我的庄园成了皇帝收留所荒年:从填饱贪吃嫂嫂后开疆扩土回到明末做皇帝大明医途:从洪武开始长生大明铁骨:系统在手,逆势铸神州大明第一会所:海天宴!爆兵后,我每天都在谋划造反康熙正史清穿:最强舰队!老子才是列强天幕直播:大明皇家奇案录!!!太后别点灯,奴才真是皇上谋断天下开局王府世子,最终摆烂失败三国:智引玄德秦牧遇月英定荆襄三国:开局系统送赵云三国:甄姬伴我统汉末天幕:盘点古人那些事儿朕,现代社畜穿成昏君后躺赢了穿越古史之龙行天下大明:开局捡个永乐大帝孤乡1大唐,开局向李二退婚水浒:我王进不打酱油黄粱一梦:从春秋开始穿越穿越大胤:我用数据颠覆皇权边军:从女囚营开始宿主的梦江湖之朕与将军解战袍三国我的底牌是信息差殿下我们造反吧大明:东宫对砍,谁赢谁是太孙穿越三国,我怎么成了华雄?