博看读书 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

第 167 章 方程根的个数之探秘

数日匆匆而过,学府内的书香依旧弥漫。戴浩文再次踏上那熟悉的讲台,新的知识篇章即将在学子们的期待中缓缓展开。

“诸位学子,前番我们在数列的世界中探寻智慧,今时今日,吾将引领尔等步入方程根的个数这一神秘领域。”戴浩文声音朗朗,目光扫过一众学子。

众学子正襟危坐,眼神中满是对新知识的渴求和好奇。

戴浩文轻挥衣袖,于黑板之上写下一道方程:“x2 - 5x + 6 = 0。”

“吾等先观此简单之例,求解方程之根,诸位当如何为之?”戴浩文问道。

有学子起身答道:“先生,可用因式分解之法,化为 (x - 2)(x - 3) = 0,得根为 2 与 3。”

戴浩文微微颔首:“善。然今所论者,非仅求其根,而在探究此类方程根之个数。”

他继而说道:“若方程为二次方程 ax2 + bx + c = 0,其判别式 Δ = b2 - 4ac 便为关键。当 Δ > 0 时,方程有两个不同之实根;当 Δ = 0 时,方程有两个相同之实根;当 Δ < 0 时,方程无实根。”

众学子听闻,纷纷低头记录。

戴浩文又举例道:“如方程 x2 + 2x + 1 = 0,其中 a = 1,b = 2,c = 1,Δ = 22 - 4x1x1 = 0,故而此方程有两个相同实根,即为 -1。”

为使学子们更明其理,戴浩文令学子们各自出题,相互求解判别式并判断根的个数。一时间,课堂内讨论之声四起,学子们或蹙眉思索,或欣然交流。

待众人稍有领悟,戴浩文话锋一转:“二次方程之理,诸位已略知一二。然方程之形多样,诸如三次方程、四次方程,乃至更高次方程,又当如何探究其根之个数?”

众学子面面相觑,皆感困惑。

戴浩文微笑道:“莫急。吾先以三次方程为例。”他在黑板上写下方程:“x3 - 6x2 + 11x - 6 = 0。”

“求解此类方程,需综合运用因式分解、试根等法。吾先试 x = 1,代入方程,发现等式成立,故 x - 1 为其一个因式。”戴浩文边说边演示。

经过一番推演,方程化为 (x - 1)(x - 2)(x - 3) = 0,“由此可知,此方程有三个实根,分别为 1,2,3。”

“至于更高次方程,其解法更为复杂,常需借助函数之图像,以观其走势,判断根之个数。”戴浩文继续讲解。

他画出函数 y = x3 - 6x2 + 11x - 6 的图像,“观此图像与 x 轴之交点,便知方程根之个数。”

学子们盯着图像,似有所悟。

戴浩文又道:“亦有一类方程,难以直接求解,如超越方程。例如,e^x - 2x - 1 = 0。”

他解释道:“此类方程,吾等可通过函数单调性、极值等性质来推断根之个数。先求其导数,判断函数增减区间,再观其极值。”

戴浩文详细地推导着,学子们跟随着他的思路,努力理解着其中的奥妙。

时光悄然流逝,已至正午,阳光透过窗棂洒入教室,但学子们浑然未觉,沉浸于知识的海洋。

“今日所学,颇为深奥,诸位需在课后多加琢磨。”戴浩文说道。

下午课程伊始,戴浩文继续深入探讨方程根的个数问题。

他在黑板上写下一道含参数的方程:“x2 + mx + 1 = 0。”

“若此方程有实数根,求参数 m 之取值范围。”戴浩文抛出问题。

学子们纷纷动笔演算。戴浩文则在台下巡视,观察学子们的解题思路。

少顷,戴浩文走上讲台,开始讲解:“由判别式 Δ = m2 - 4,若方程有实根,则 Δ ≥ 0,即 m2 - 4 ≥ 0,解得 m ≥ 2 或 m ≤ -2。”

接着,他又给出几道类似的含参数方程,让学子们巩固所学。

“再看这道方程,”戴浩文又写下:“x3 - 3x + k = 0,已知其有且仅有一个实根,求 k 的取值范围。”

学子们再次陷入沉思。戴浩文提示道:“可先求导,分析函数单调性。”

经过一番思考和讨论,学子们逐渐找到了解题的关键。

戴浩文见众人有所领悟,心中甚喜,又道:“方程根之个数问题,亦与函数之零点定理相关。若函数 f(x) 在区间 (a, b) 内连续,且 f(a) 与 f(b) 异号,则在区间 (a, b) 内至少存在一个零点,即方程 f(x) = 0 在区间 (a, b) 内至少有一个实根。”

为让学子们更好地理解,戴浩文举例画图,详细阐述。

随后,戴浩文又列举了一些实际应用中的方程根的个数问题,如物体运动轨迹方程、桥梁受力方程等,让学子们明白方程根的个数问题在生活中的重要性。

课程接近尾声,戴浩文总结道:“方程根之个数,乃数学之重要内容,其理深邃,应用广泛。望诸君勤加研习,日后必能有所用。”

学子们虽感疲惫,但收获满满,眼中满是对未来学习的期待。

次日,戴浩文再次走进教室,开始检验学子们对昨日所学的掌握情况。

他在黑板上写下几道难题,让学子们上台解答。学子们有的思路清晰,顺利解题;有的则略显紧张,出现失误。戴浩文均一一耐心指导,纠正错误。

之后,戴浩文又针对学子们的薄弱环节进行了重点复习和强化训练。

“数学之途,永无止境。方程根之个数,仅是冰山一角。”戴浩文鼓励学子们,“只要汝等有恒心、有毅力,定能在数学之海洋中畅游无阻。”

在接下来的日子里,戴浩文不断变换教学方法,通过实例分析、小组讨论、专题研究等方式,加深学子们对方程根的个数的理解和应用能力。

学府内,学子们时常聚在一起,探讨方程之奥秘,学术氛围愈发浓厚。

一次考核中,学子们在方程根的个数相关题目上表现出色,戴浩文深感欣慰。然而,他深知教学之路漫长,仍需不断探索创新,引领学子们走向更高深的数学殿堂。

春去秋来,学府内的学子们在戴浩文的教导下,在数学的道路上稳步前行,不断追求着真理与智慧。

博看读书推荐阅读:回到明朝做昏君明末:大周太祖崛起1892农家小媳妇烽烟起之龙啸天下无敌从我是特种兵开始挽清:同治盛世始皇帝猎国!末世从封王开始诗词无双,这个乞丐是诗仙说好的纨绔,怎么就人中龙凤了!穿越古代:开局召唤玄甲铁骑大明未央穿越大康:众人吃野菜,我带娇妻大鱼大肉三国:我刘阿斗真不是曹操的种啊带着全面战争开始征服三国第一强兵江户旅人戏说西域36国契约娇妻:王爷的宠妃大唐:我摆烂后,武则天慌了!浪子列国历险记交手公子出巡琅琊榜之安定天下大唐:误会了我不是你爹!大明开着战舰做生意塞仙志从废物到大帝,你们高攀不起!历史放映厅从大秦开始穿越明朝,开局觉醒华夏文明隋唐:被李家退婚,我截胡观音婢回到三国初年搅动天下穿越大乾,开局就娶三个媳妇视频被古人看到了怎么办北宋振兴攻略重生大明只想养老系统要征服天下穿越:新妃十八岁科举,这个书生会武功糜汉被抄家后,凶猛世子称霸天下医道风云志我执天下我是王富贵穿越大明我成了老朱儿子!陛下,饶了貂蝉吧,你阳气太重了都穿越了,谁还惯着你,造反!烧锅千年烟火传正德五十年
博看读书搜藏榜:七十年代那场战争春秋发明家三国第一狠人大明群英传歃血绝对荣誉出生后就被内定为皇后如何帮助女主在异世界建立势力?西楚霸王:开局进宫假太监三国之献帝兴汉大隋:我,杨广,又苟又稳帝国联盟大唐房二人生苦乐多:王朝中兴看我了银河武装:带颗卫星到大明生子当如孙仲谋我在古代逃荒人在三国也修真精灵降临!陛下,这叫宝可梦!一天拯救大明,我自己也没底贤王传大宋说书人魂穿大唐公主收割机大宋祖王爷三国纵横之凉州辞开局结交孙坚,截胡传国玉玺没想到吧我是重生的穿越三国,匡扶汉室!穿越乱世,我开创了盛世王朝大宋第一太子朱门华章录人在大唐本想低调三国之极品富二代终极潜伏北京保卫战逆转,延大明百年国祚蒸汽大汉:家兄霍去病特种兵之万界军火商郭嘉乱世枭雄之胡子将军秦有锐士极品妖孽兵王染谷君的异常三国之召唤梁山好汉科举,这个书生会武功大唐:我摆烂后,武则天慌了!湛湛露斯卿镇国二公子王爷乱来:亲亲小痞妃向秦始皇送上大学生盛世第一妾
博看读书最新小说:天幕:对!我爹洪武三十五年传位红楼:开局听劝系统,贾颜逆袭综武:我的弟子不知低调为何物元末:红旗漫卷,替天行道娘娘,请卸甲!重生明末?结党!必须结党!幽州铁骑:开局替刘备结拜了大明:朕即天意,手搓神话大军开局:系统,你管这叫九子夺嫡?古人的智慧开局穿越,我在晚唐搞基建我是纨绔世子,怎么就要造反了?我的庄园成了皇帝收留所荒年:从填饱贪吃嫂嫂后开疆扩土回到明末做皇帝大明医途:从洪武开始长生大明铁骨:系统在手,逆势铸神州大明第一会所:海天宴!爆兵后,我每天都在谋划造反康熙正史天幕直播:大明皇家奇案录!!!太后别点灯,奴才真是皇上三国:智引玄德秦牧遇月英定荆襄三国:开局系统送赵云三国:甄姬伴我统汉末天幕:盘点古人那些事儿朕,现代社畜穿成昏君后躺赢了大明:开局捡个永乐大帝孤乡1大唐,开局向李二退婚水浒:我王进不打酱油黄粱一梦:从春秋开始穿越穿越大胤:我用数据颠覆皇权边军:从女囚营开始宿主的梦三国我的底牌是信息差朕避他锋芒?龙纛前压,天子亲征晚明从关中田亩开始青史照山河穿越乱世成流民,从带枪逃荒开始踏平五代,我建最强帝国大秦:改写历史,拓万里江土三国之我乃诸葛大兄三国:从甄府赘婿到开国帝王天朝魂赤火汉末魂大秦咸鱼皇太子,天道显示我第一穿越古代,靠卖猪头肉养活儿女汉疆喋血风云录带着漫威回北宋