博看读书 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

徐川刚转身走了两步,身后陶哲轩教授的邀请就过来了。

停下脚步,他有些疑惑的看了一眼,问道:“舒尔茨教授的报告会不是在明天上午九点吗?”

他之前看过这次数学交流会的形成安排,对于每一个值得他去听的报告时间都记得清清楚楚,舒尔茨教授的报告是他这次的重点目标之一。

舒尔茨教授和陶哲轩一样,是数学界的新星,不过他的年龄要小一些,今年还不到三十岁。

两人被数学界誉为双子塔,可见他们已经拉开了其他同龄人不小的差距。

“是的,原本是上午十点,但是w.t高尔斯教授临时有事情赶回剑桥了,所以今天下午的报告有一份提前了,这些东西应该发你邮箱了。”陶哲轩笑着解释道。

“哦,原来是这样,那麻烦陶教授了。”徐川点了点头,转身跟上陶哲轩的步伐。

“正好咱可以接着聊聊具分形边界的问题不是吗?”陶哲轩推了推眼镜框,笑着看向徐川。

.......

两人赶到舒尔茨教授所在报告会一号礼堂时,证明报告已经开始了。

找了个座位坐下,徐川望向了舞台上留着齐肩卷发的身影,开始认真的听讲。

这次普林斯顿的数学交流会,彼得·舒尔茨不出意料的讲解是他的最大成果‘类完美空间的数学概念’。

这是他在博士期间创造的一种数学工具,又叫做‘p·s进域-几何理论’。

这项理论让数学家得以借此证明代数几何和其他领域中的许多未解谜题,也将拓扑学、加罗瓦理论和p进数结合到了一起,构成了新的数学。

目前而言,这套理论在数学界很火,在数论领域更是独一无二的宠儿。

一方面是发明者舒尔茨本人利用这套理论对朗兰兹纲领做出来很多重大的突破,这引起了众多数学家的重视。

另一方面,则是p进数是数论领域的核心,比如怀尔斯教授在证明费马大定理的时候,几乎每一步都涉及到了p进数的概念。

而且目前数学界几乎一致认为,几何和代数的大统一的研究就可能在p进数上。

哦,顺带提一下,他之前的研究,weyl-berry猜想也有一部分和p进数有关系。

所以徐川对于舒尔茨教授的这一场报告会很重视,寄希望于从上面得到某些灵感,进而对weyl-berry猜想的谱渐近做出突破。

“徐,我们都知道p进ζ函数是p进l函数的一个例子,它体现了对应数域的解析性质,而coates-wiles和 an在明显互反律的工作表明上述多项式和 ch(e\/c)只是相差一个固定多项式。”

“你说如果选取一个合适的加罗德域作为有限交换群,是否能将代数对象等同于p-进解析对象?”

一旁,正认真坐着听讲的陶哲轩突然凑了过来,小声的询问道。

徐川皱了皱眉,问道:“岩泽理论的主猜想?”

陶哲轩点了点头,道:“嗯,刚刚在听舒尔茨教授讲解他的类似完备空间理论时有些启发,或许值得尝试一下,你怎么看?”

闻言,徐川紧皱起了眉头,思虑了一番后道:“考虑群环 zp[gn]构成的系,由于 gn到 gn?1之间存在自然限制映射,此系也存在射影极限Λ,事实上,Λ同构于以 zp为系数的幂级数环 zp[[t]],它被称做岩泽代数......”

“回到分圆 zp扩张的情形. kn的理想类群是有限交换群,记其 p部分是an.一方面,由于它是p阶群,有zp的作用;而另一方面 kn\/k的加罗瓦群作用在它上面,故 an是环 zp[gn]的有限模.由于 kn+1到 kn有自然的映射,我们可以得到 an+1到 an的自然映射......”

“从ch(a)= ch(e\/c).可以看出, a说明的是数域的理想类群,是一个纯粹的代数对象.而分圆单位本质上是一个解析对象。”

【推荐下,野果阅读追书真的好用,这里下载 .yeguoyuedu 大家去快可以试试吧。】

“从这个角度来看,想要用一个合适的加罗德域作为有限交换群,进而等同代数和p进数恐怕是一件很难的事情。”

闻言,陶哲轩陷入了沉思中,半响后才道:“但域群的有限扩张应该可以解决这个问题,这可以利用舒尔茨教授的类似完备空间理论,这套理论能做到将局部域上的算术问题简化表示为特定的特征及特征域的组合......”

徐川耸了耸肩,道:“抱歉,这方面我就不清楚了,舒尔茨教授的‘p·s进域-几何理论’我并不熟悉,不然今天我也不会坐到这里学习了。”

这方面他的确不熟悉,p·s进域-几何理论是代数与几何方面的东西,而p进数更是纯数论方面的,上辈子他基本没多少了解,刚刚他说的这些东西还是过年之前学些域扩张时了解的一些知识。

听到这话,陶哲轩才勐然惊醒过来:“哦,我差点忘了你今年才上大一,舒尔茨教授的类似完备空间理论对于大学生来说的确有点难懂。”

“不过你的学识真是让我吃惊,没想到除了谱渐近和具分形边界连通区域外,你对在群环和有限域上的理解也这么深刻。”

“你真的是一名还在读本科的大学生吗?或许你在未来可以更多的尝试深入了解一下这方面的内容。”

徐川笑了笑,道:“我正在这么做。”

闻言,陶哲轩感叹道:“看来在不久的将来,我们又将迎来一名数学界的新星。”

顿了顿,陶哲轩又接着道:“徐,不如你来加州大学读博如何?关于岩泽理论的主猜想我这边有一些思路,如果你感兴趣的话,我们可以一起来解决这个问题。”

“关于群域这方面的东西,我需要一个人帮助,你很合适,而且我们交流和愉快不是吗?”

一旁,一名来自阿根廷的数学教授一脸懵逼的看着陶哲轩和徐川。

wtf?

这两人在说什么东东?

很显然,这名数学教授全程听完了两人的聊天。

但遗憾的是,他一个字都没听懂。

嗯,也不能这么说,群域,加罗瓦域,岩泽理论这些关键词他是听懂了的。

可惜前后连起来他就不知道这两人说的是啥了。

他并不认识徐川,但认识陶哲轩教授。

一开始的时候他还以为这是陶教授带的学生,正庆幸自己能坐到大名鼎鼎的陶教授身边,准备在听完舒尔茨教授的报告后好好找陶教授请教一下的。

但随着时间的流逝,两人交流起来的时候他就懵了。

这年轻人,好像不是陶教授的学生的样子。

数学界什么时候新出了一个能这样和陶教授畅所欲言交流的新人?

他没听说过啊。

而且,陶教授亲自邀请过去读博,邀请一起参与岩泽理论的科研项目,这待遇.......

fk,他好羡慕,就像是坐在高高的柠檬山上一样,好酸!

.......。

博看读书推荐阅读:克系世界,但我散播诅咒拔魔末世之黑暗召唤师快穿之十佳好爸爸星极埃及神主大明小郎君灵气复苏,我的植物会变形拿无限当单机食物链顶端的男人希望犹在之第一部风卷龙旗重生之再许芳华快穿之戏精不作死我在末日求生的那些年拥有治疗系的我打穿了世界水淹全球,我掌握了无数物资灾厄之祸快穿:男神,谈个恋爱赤瞳怪物入侵,我开局加点无敌极寒末世:神之禁区重生耍宝,末世侵吞鹰酱百亿物资幻想世界大掠夺夜行骇客系统降临!助我战虫族死而复生后我在末世开杂货铺黑暗之下:废土世界的危机我可能是个伪学霸末世来临,我拥有了一座小岛无敌从火影开始中场主宰末世之无敌召唤系统我的废品站,能回收太空战舰快穿黑心莲:恶毒女配撩疯了雇佣兵纪元:系统宿主大乱斗从抽到超级制造机开始末日求生:我随身带着电饭锅末世重生之我成了移动蔬菜包末世:谁人都是主角士无归期:抗日从端个炮楼开始三天一进化,我的吞噬天赋太BUG了末日:开枝散叶,从老板娘开始超神穿越之虚空战争末世异能科技机器人叛乱,我要逃离银河系卡牌:老婆有点呆,但统率万龙我的半仙女友深空虚无天灾末世:开局搜刮全球物资星际雌性,抚慰力最强末日:开局被邻家御姐逆推了
博看读书搜藏榜:快穿恶婆婆之这个儿媳我罩了种子战记二点零无限之巫师的旅途重生末世追妻帝少快穿这个反派太完美从赛博朋克开始万族争霸从一剑开始诸天鸿蒙树末日操植师关于我在同人无限流世界冒险这事快穿之拯救这崩坏的世界末日世界历险记北方巨兽龙快穿女配之气运男神超神学院之冰冻虚空穿书后,向导在艰难求生!末日模拟器,我以剑道证超凡泯灭之世长生遥科技皇朝万界融合:我能调控爆率我变成了个丧尸辐射:重启范布伦斗擎快穿女配之反派别黑化女配她又不做人了异世飙升神选之日三生无明快穿女配:男主全部黑化了麒麟神相一觉睡醒我继承了亿万赛博遗产重回锦绣师父你修什么道的?末日终结战超级巨星系统美男攻略战明日方舟:时之旅人我的成神日志穿书之这个男主有毒名侦探诸葛亮工业皇帝我活在你身体里我成了血族始祖长生修仙:从三代同堂开始穿越鬼灭后,想活命行不行?重生败寇为王快穿:反派BOSS皆病娇火星先生网前杀手
博看读书最新小说:星渊生死轮回那瓶饮料下的情愫末世,神选之争恶雌种田不攻略,黑化兽夫急红眼末世团灭后,我征服了女主后宫两眼一睁就是肝见诡法则穿越之都市红颜宠我在末世开当铺的日子末日,机甲,移动堡垒穿越末世之宝妈有点凶重生之给外婆逆天改命末世:被困女大寝室,一秒一物资点末世:一个人开局烧烤摊?我横穿整个末世暴富末日:我能无限提取!重生都市之主末世无限吞噬当红场钟声再尸潮中响起蚀日纪元之王本道会演戏的炮灰逆袭十万个字为什么星际之恋:从离星到地球我在末世摸爬滚打的日子核废土上崛起末世大洪水,美女邻居上门借粮归虚道途重生之我到异变纪元去种田废柴美人超好孕,五个大佬宠不停全球极寒天灾,我带崽躺赢全球丧尸化我开房车去西藏进化序曲剑仙老祖靠直播毛茸茸爆红星际我在现代量子封神黑暗本源恶雌丑又渣?治愈众兽夫后被狂宠末日暗涌:血色异能博弈我的系统,狂揽宇宙科技天狼极夜:雷纹觉醒反派他于无限轮回中清醒沉沦废土齿轮:共生代码末世纹身:我纹十凶末日乱杀星际猎人卡牌:重塑天地规则末世:成为哥布林召唤师外星人都打来了我只能修炼保命极寒主宰:零度末世进化末世大佬成弱雌,星际全员真香了星际武道:炎黄文明崛起纪元修仙纵横末世